Welcome to Part 3 - Classification!


Unlike regression where you predict a continuous number, you use classification to predict a category. There is a wide variety of classification applications from medicine to marketing. Classification models include linear models like Logistic Regression, SVM, and nonlinear ones like K-NN, Kernel SVM and Random Forests.

In this part, you will understand and learn how to implement the following Machine Learning Classification models:

  1. Logistic Regression
  2. K-Nearest Neighbors (K-NN)
  3. Support Vector Machine (SVM)
  4. Kernel SVM
  5. Naive Bayes
  6. Decision Tree Classification
  7. Random Forest Classification


Enjoy Machine Learning!